37 research outputs found

    Structural and Magnetic Properties of Trigonal Iron

    Full text link
    First principles calculations of the electronic structure of trigonal iron were performed using density function theory. The results are used to predict lattice spacings, magnetic moments and elastic properties; these are in good agreement with experiment for both the bcc and fcc structures. We find however, that in extracting these quantities great care must be taken in interpreting numerical fits to the calculated total energies. In addition, the results for bulk iron give insight into the properties of thin iron films. Thin films grown on substrates with mismatched lattice constants often have non-cubic symmetry. If they are thicker than a few monolayers their electronic structure is similar to a bulk material with an appropriately distorted geometry, as in our trigonal calculations. We recast our bulk results in terms of an iron film grown on the (111) surface of an fcc substrate, and find the predicted strain energies and moments accurately reflect the trends for iron growth on a variety of substrates.Comment: 11 pages, RevTeX,4 tar'd,compressed, uuencoded Postscript figure

    Symmetry of the Atomic Electron Density in Hartree, Hartree-Fock, and Density Functional Theory

    Full text link
    The density of an atom in a state of well-defined angular momentum has a specific finite spherical harmonic content, without and with interactions. Approximate single-particle schemes, such as the Hartree, Hartree-Fock, and Local Density Approximations, generally violate this feature. We analyze, by means of perturbation theory, the degree of this violation and show that it is small. The correct symmetry of the density can be assured by a constrained-search formulation without significantly altering the calculated energies. We compare our procedure to the (different) common practice of spherically averaging the self-consistent potential. Kohn-Sham density functional theory with the exact exchange-correlation potential has the correct finite spherical harmonic content in its density; but the corresponding exact single particle potential and wavefunctions contain an infinite number of spherical harmonics.Comment: 11 pages, 6 figures. Expanded discussion of spherical harmonic expansion of Hartree density. Some typos corrected, references adde

    Exact-exchange density-functional theory for quasi-two-dimensional electron gases

    Full text link
    A simple exact-exchange density-functional method for a quasi-two-dimensional electron gas with variable density is presented. An analytical expression for the exact-exchange potential with only one occupied subband is provided, without approximations. When more subbands are occupied the exact-exchange potential is obtained numerically. The theory shows that, in contradiction with LDA, the exact-exchange potential exhibits discontinuities and the system suffers a zero-temperature first-order transition each time a subband is occupied. Results suggesting that the translational symmetry might be spontaneously broken at zero temperature are presented. An extension of the theory to finite temperatures allows to describe a drop in the intersubband spacing in good quantitative agreement with recent experiments.Comment: 14 pages, 3 figure

    Density-functional theory of quantum wires and dots in a strong magnetic field

    Full text link
    We study the competition between the exchange and the direct Coulomb interaction near the edge of a two-dimensional electron gas in a strong magnetic field using density-functional theory in a local approximation for the exchange-energy functional. Exchange is shown to play a significant role in reducing the spatial extent of the compressible edge channel regions obtained from an electrostatic description. The transition from the incompressible edge channels of the Hartree-Fock picture to the broad, compressible strips predicted by electrostatics occurs within a narrow and experimentally accessible range of confinement strengths.Comment: 24 pages latex and 10 postscript figures in self extracting fil

    Direct Minimization Generating Electronic States with Proper Occupation Numbers

    Full text link
    We carry out the direct minimization of the energy functional proposed by Mauri, Galli and Car to derive the correct self-consistent ground state with fractional occupation numbers for a system degenerating at the Fermi level. As a consequence, this approach enables us to determine the electronic structure of metallic systems to a high degree of accuracy without the aid of level broadening of the Fermi-distribution function. The efficiency of the method is illustrated by calculating the ground-state energy of C2_2 and Si2_2 molecules and the W(110) surface to which a tungsten adatom is adsorbed.Comment: 4 pages, 4 figure

    Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field

    Full text link
    Soliton excitations and their stability in anisotropic quasi-1D ferromagnets are analyzed analytically. In the presence of an external magnetic field, the lowest lying topological excitations are shown to be either soliton-soliton or soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic size, these configurations correspond to twisted or untwisted pairs of Bloch walls. It is shown that the fluctuations around these configurations are governed by the same set of operators. The soliton-antisoliton pair has exactly one unstable mode and thus represents a critical nucleus for thermally activated magnetization reversal in effectively one-dimensional systems. The soliton-soliton pair is stable for small external fields but becomes unstable for large magnetic fields. From the detailed expression of this instability threshold and an analysis of nonlocal demagnetizing effects it is shown that the relative chirality of domain walls can be detected experimentally in thin ferromagnetic films. The static properties of the present model are equivalent to those of a nonlinear sigma-model with anisotropies. In the limit of large hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to appear in Phys Rev B, Dec (1994

    Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

    Full text link
    We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small Vn_{n} clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider different cluster structures such as: i) a single V impurity, ii) several V2_{2} dimers having different interatomic distance and varying local atomic environment, iii) V3_{3} and iv) V4_{4} clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the v) V5_{5} and vi) V6_{6} structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.Comment: 7 pages and 4 figure

    Localized states in 2D semiconductors doped with magnetic impurities in quantizing magnetic field

    Full text link
    A theory of magnetic impurities in a 2D electron gas quantized by a strong magnetic field is formulated in terms of Friedel-Anderson theory of resonance impurity scattering. It is shown that this scattering results in an appearance of bound Landau states with zero angular moment between the Landau subbands. The resonance scattering is spin selective, and it results in a strong spin polarization of Landau states, as well as in a noticeable magnetic field dependence of the gg factor and the crystal field splitting of the impurity dd levels.Comment: 12 pages, 4 figures Submitted to Physical Review B This version is edited and updated in accordance with recent experimental dat

    Occupation numbers in density-functional calculations

    Full text link
    It is the intention of this paper to rigorously clarify the role of the occupation numbers in the current practical applications of the density functional formalism. In these calculations one has to decide how to distribute a given, fixed number of electrons over a set of single-particle orbitals. The conventional choice is to have orbitals below the Fermi level completely occupied and the orbitals above the Fermi level empty. Although there is a certain confusion in literature why this choice is superior to any others, the general belief is that it can justified by treating the occupation numbers as variational parameters and then applying Janak's theorem or similar reasoning. We demonstrate that there is a serious flaw in those arguments,mainly the kinetic energy and therefore the exchange-correlation potential are not differentiable with respect to density for arbitrary occupation numbers. It is rigorously shown that in the present context of the density functional calculations there is no freedom to vary the occupation numbers. The occupation numbers cannot be considered as variational parameters.Comment: 10 pages, Revtex, accepted for publication by Phys.Rev.

    Electron-electron interactions and two-dimensional - two-dimensional tunneling

    Full text link
    We derive and evaluate expressions for the dc tunneling conductance between interacting two-dimensional electron systems at non-zero temperature. The possibility of using the dependence of the tunneling conductance on voltage and temperature to determine the temperature-dependent electron-electron scattering rate at the Fermi energy is discussed. The finite electronic lifetime produced by electron-electron interactions is calculated as a function of temperature for quasiparticles near the Fermi circle. Vertex corrections to the random phase approximation substantially increase the electronic scattering rate. Our results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file; Phys. Rev. B (in press
    corecore